My Items

I'm a title. ​Click here to edit me.

MIT Sustainable Supply Chains

The MIT Center for Transportation & Logistics launched Sustainable Supply Chains in 2018 as an umbrella program that brings together our sustainability research, education, and outreach. Our goal is to connect research outcomes to practical settings, enabling companies and stakeholders to leverage supply chains as a beneficial force to reaching global sustainable development goals. We seek to improve visibility of supply chain impacts and develop strategies to help reduce them, so companies can better address consumer, political, and shareholder concerns. The lab has a wide portfolio of research projects including supply chain transparency, sustainable logistics, sustainable procurement, consumer purchasing behavior, and on. The research is inclusive of issues across the supply chain and spans social, environmental, and economic impact areas.

MIT Digital Supply Chain Transformation

Digital transformation is now a keystone of operational, organizational, and technological structures for companies and supply chains who desire to be competitive in the vision of the future business environment. Our work aims to support organizationally adaptable, technologically compatible, and economically viable transformation for improving performance.
The primary research examines new collaborative paradigms that arise while implementing different new digital technologies in supply chains. Our research domains are digital platforms, multidimensional collaboration, digital capabilities and Artificial Intelligence (AI) in supply chains. Our research fosters more visible, efficient, flexible and resilient networks. We apply quantitative research methodologies in order to assess how data-driven ecosystems create value.

Humanitarian Supply Chain Lab

The mission of the MIT Humanitarian Supply Chain Lab is to understand and improve the supply chain systems behind public services and private markets to meet human needs. Based within the MIT Center for Transportation and Logistics, the Lab combines expertise in engineering, management, information technology, social science, economics, and other disciplines to drive practical innovation for humanitarian interventions. The lab has a diverse portfolio of projects to improve emergency response during crisis and to enable market development that improves resilience. Our theoretical and applied research is driven by active engagement with the private sector, government agencies, humanitarian, international development, and community organizations on several continents.

MIT FreightLab

The MIT FreightLab mission is to drive innovation into the freight transportation industry in order to reduce cost, minimize risk, and increase the level of service. Freight transportation is subject to highly volatile demand and costs that are typically outside of a firm’s ability to control or even influence. This is compounded by a dominant design in terms of how freight is historically procured and managed. FreightLab research focuses on working with companies to develop and implement real-world solutions to these challenges.
FreightLab objectives are to develop innovations in freight transportation planning and operations and drive them into practice. Recently, we have developed methods for forecasting both short term spot-market rates and longer-term contract rates. We are exploring alternative contract forms between shippers and carriers that increase the level of trust in the relationship and yield better results for both parties. Working with a wide range of shippers, carriers, and third-party providers, the freight lab team develops and delivers better ways to design, procure, and manage large-scale freight transportation systems.


The Community Innovators Lab (CoLab) is a center for planning and development within the MIT Department of Urban Studies and Planning (DUSP). CoLab facilitates the interchange of knowledge and resources between MIT and community organizations. CoLab works with MIT students, faculty,
and technical resources to build collaborations with communities. Together we implement strategies that harness existing community assets and capture value to promote inclusive economic development that is environmentally sustainable, socially just, and deeply democratic. CoLab brings multi-disciplinary
expertise from urban planning, municipal government, business, community media, civil rights advocacy, and community and labor organizing.

Energy-at-Scale Center

MIT’s Energy at Scale Center seeks to address the massive scaling requirements necessary for low-carbon technologies to make a substantial contribution to future global energy needs, in collaboration with industry, government, and nonprofit members. We examine economic, technical, environmental, political, and public opinion barriers for deployment. We explore these risks using our Integrated Global System Modeling (IGSM) framework that combines the Economic Projection and Policy Analysis (EPPA) model, MIT Earth System Model (MESM), as well as a portfolio of impact assessment models that focus on life‑sustaining resources (e.g., managed water systems, crop production, ecosystem/forest services, wind/solar/hydropower, and air quality). These linked computer models allow us to analyze a wide range of development pathways in the global energy, agricultural, transportation, and other key sectors.

Center for Real Estate, and Sustainable Urbanization Lab

The goal of the Sustainable Urbanization Lab (SUL) is to establish behavioral foundations for urban and environmental planning and policies aimed at sustainable urbanization in the most rapidly urbanizing regions of the world.

The SUL will be defined by three ‘blocks’: two of which are inter-related research themes: Environmental Sustainability and Place-based Policies and Self-Sustaining Urban Growth; the third block, an educational program the China Future City Program, will continue to serve as the teaching and research center of China’s urbanization on MIT campus.

Computational and Visual Education (CAVE) Lab

The CAVE lab provides students, researchers, and decision makers with a more intuitive understanding of and access to quantitative methods to support strategic design, tactical planning and operational decision problems in the supply chain and logistics domain and related fields. Based on a newly created physical lab space at MIT CTL equipped with state-of-the-art visualization technology, the lab is developing interactive visual interfaces to data and analytical tools, addressing complex supply chain and logistics problems.

The lab enables research advances in three major domains:

Development, improvement and application of traditional quantitative methods in supply chain, logistics, and transportation decision making (network design, distribution systems, inventory management, risk management, etc.)
Adaptation and application of advanced data science methods (machine learning, network science, etc.) to large and diverse datasets to characterize, understand, predict, and improve the performance of complex supply networks, transportation and logistics systems
Behavioral analysis of human decision making in supply chain management, transportation and logistics in light of interactive visualization being used as a tool to communicate, analyze, and manipulate context- and problem-related information

Age Lab

The MIT AgeLab was created in 1999 to invent new ideas and creatively translate technologies into practical solutions that improve people's health and enable them to “do things” throughout the lifespan. Equal to the need for ideas and new technologies is the belief that innovations in how products are designed, services are delivered, or policies are implemented are of critical importance to our quality of life tomorrow.

Marine Robotics Group

The Marine Robotics Group, headed by Prof. John J. Leonard, is part of CSAIL at MIT. Our projects are centered around the problems of navigation and mapping for autonomous mobile robots operating in underwater and terrestrial environments.

Quest for Intelligence

MIT Quest addresses two fundamental questions: How does human intelligence work, in engineering terms? And how can we use our understanding of human intelligence to build smarter machines for the benefit of society? As part of our mission, we are developing customized AI tools for non-AI researchers, which could accelerate progress in many fields. We see an opportunity to achieve a deeper understanding of intelligence through the kind of basic research that leads to unexpected breakthroughs. We aspire for our new knowledge and newly built tools to serve the public good, in our nation and around the world.

City Form Lab

The City Form Lab at MIT focuses on urban design, planning and real-estate research. We develop new software tools for researching city form; use cutting-edge spatial analysis and statistics to investigate how urban form and land-use developments affect urban mobility and business location choices; and develop creative design and policy solutions for contemporary urban challenges. By bringing together multi-disciplinary urban research expertise and excellence in design, we develop context sensitive and timely insight about the role of urban form in affecting the quality of life in 21st century cities. CFL involves inter-disciplinary researchers and students interested in urban design, planning, transportation, spatial analysis and decision-making.

Subscribe to our mailing list

Sign up with your email address to receive news and updates from the Mobility Initiative.

 © Massachusetts Institute of Technology   |   77 Massachusetts Avenue, Cambridge MA, 02139   |