Entry and Coordination in the Electric Vehicle Charging Industry

Jing Li ¹ Katalin Springel ²

¹MIT Sloan School of Management
²HEC Montréal

MIT Mobility Forum
December 1st, 2022
Entry and coordination in network settings

- Spillovers in entry decisions
 - Usually negative from business stealing
 - Positive in network settings (ride-sharing, telecommunications, etc.)

- Potential for inefficiently low entry, which could warrant government policies
Entry and coordination in network settings

- Spillovers in entry decisions
 - Usually negative from business stealing
 - Positive in network settings (ride-sharing, telecommunications, etc.)

- Potential for inefficiently low entry, which could warrant government policies

- This project: Electric vehicle charging station entry decisions
 - Does the market coordinate entry efficiently?
 - Can targeted subsidies improve market efficiency?
An entrant may have positive spillovers on others along the same route.
An entrant may have positive spillovers on others along the same route

• The last entrant to “connect the dots” can increase value of far-away incumbents
An entrant may have positive spillovers on others along the same route

- The last entrant to “connect the dots” can increase value of far-away incumbents
- The last entrant’s private value of entry also depends on the set of incumbents
- Positive spillovers + independent entry decisions \(\Rightarrow\) inefficiently low entry
“Right now it’s patchy—some places where you wouldn’t have a problem, other places where you would. We need to make [EV charging] universal.”
2021 IIJA: $5 billion for EV charging stations every 50 miles

“Right now it’s patchy—some places where you wouldn’t have a problem, other places where you would. We need to make [EV charging] universal.”

“Do we need support for gas stations? We don’t […] Delete it.”
Research questions

1. Are there positive spillovers across electric vehicle charging sites?

2. Is entry inefficiently low in some places?

3. What are the efficiency implications of the IIJA guidelines compared to alternative policies, such as a uniform subsidy?
Project roadmap

• **Reduced-form estimates**
 • Spillover test 1: impact of entry on incumbents at different distances
 • Spillover test 2: impact of a route becoming connected on incumbents along the route

• **Model**
 • Consumer demand for vehicles and charging services
 • Entry decisions by charging station site hosts
 • Charging network pricing for both sides of the market

• **Counterfactuals:** simulate charging network build-out and utilization for:
 1. A uniform subsidy and the US government NEVI program guidance (February 2022, completing highway corridors at most 50 miles apart)
 2. Charging network merger
Plan for today

- **Reduced-form estimates**
 - Spillover test 1: impact of entry on incumbents at different distances
 - Spillover test 2: impact of a route becoming connected on incumbents along the route

- **Model sketch**
 - Consumer demand for vehicles and charging services
 - Entry decisions by charging station site hosts
 - Charging network pricing for both sides of the market

- **Counterfactuals:** simulate charging network build-out and utilization for:
 1. A uniform subsidy and the US government NEVI program guidance (February 2022, completing highway corridors at most 50 miles apart)
 2. Charging network merger
Literature

EV markets
- Charging networks: Springel (2021), Li (2019), Li, Tong, Xing, & Zhou (2017),
- This paper: Whether charging station entry subsidies should be targeted, novel data

Firm entry

Assortment optimization with multiple categories basket shoppers
- Cachon and Kök (2007)

Bargaining in platforms and vertical markets
Roadmap of talk

1. **Industry background & Data**

2. Reduced-form estimates
 a. Spillover test 1: station-level
 b. Spillover test 2: route-level

3. Model
Electric vehicle charging primer

• Charging stations
 • Collections of charging posts
 • Offered by site hosts
 • Independent or affiliated with a network

• Standards: still 3 different Level 3 (fast) standards in the U.S.

• Retail prices
 • Set by site hosts or network
 • Linear, nonlinear, TOU
 • In energy or time
Charging site hosts vary in their primary purpose or business

<table>
<thead>
<tr>
<th>Type</th>
<th>Share of Charging Site Host Types (Level 3/Fast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopping Center</td>
<td>0.27</td>
</tr>
<tr>
<td>Car Dealership</td>
<td>0.18</td>
</tr>
<tr>
<td>Store</td>
<td>0.09</td>
</tr>
<tr>
<td>Parking Garage/Lot</td>
<td>0.07</td>
</tr>
<tr>
<td>Gas Station</td>
<td>0.07</td>
</tr>
<tr>
<td>Hotel/Lodging</td>
<td>0.05</td>
</tr>
<tr>
<td>Restaurant</td>
<td>0.05</td>
</tr>
<tr>
<td>Store/Convenience</td>
<td>0.04</td>
</tr>
<tr>
<td>Workplace Public</td>
<td>0.04</td>
</tr>
<tr>
<td>Rest Stop</td>
<td>0.02</td>
</tr>
<tr>
<td>Government</td>
<td>0.02</td>
</tr>
<tr>
<td>School/University</td>
<td>0.01</td>
</tr>
<tr>
<td>Bank</td>
<td>0.01</td>
</tr>
<tr>
<td>Civic</td>
<td>0.01</td>
</tr>
<tr>
<td>Park</td>
<td>0.01</td>
</tr>
<tr>
<td>Car Service</td>
<td>0.01</td>
</tr>
<tr>
<td>Street Parking</td>
<td>0.01</td>
</tr>
<tr>
<td>Library</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Charging network companies differ in build-out strategies

(a) ChargePoint

(b) Electrify America

(c) Blink

(d) Tesla
Data

• **Travel patterns**
 • Safegraph: anonymized mobile data from 45 million devices
 • By home census block group, specific establishments visited and frequency of visits
Data

• **Travel patterns**
 • Safegraph: anonymized mobile data from 45 million devices
 • By home census block group, specific establishments visited and frequency of visits

• **Vehicle demand**
 • IHS: vehicle registration data
 • Counts of vehicles by make, model, model year, trim, and engine variant
 • By zip code and year from 2013 - present
 • Merge in vehicle characteristics such as fuel type, electric range, horsepower, and MSRP
Data

• **Travel patterns**
 - Safegraph: anonymized mobile data from 45 million devices
 - By home census block group, specific establishments visited and frequency of visits

• **Vehicle demand**
 - IHS: vehicle registration data
 - Counts of vehicles by make, model, model year, trim, and engine variant
 - By zip code and year from 2013 - present
 - Merge in vehicle characteristics such as fuel type, electric range, horsepower, and MSRP

• **Charging location and attributes**
 - AFDC
 - Entry date, GPS coordinates, connector count/types, price, network affiliation, amenities
Data

• Travel patterns
 • Safegraph: anonymized mobile data from 45 million devices
 • By home census block group, specific establishments visited and frequency of visits

• Vehicle demand
 • IHS: vehicle registration data
 • Counts of vehicles by make, model, model year, trim, and engine variant
 • By zip code and year from 2013 - present
 • Merge in vehicle characteristics such as fuel type, electric range, horsepower, and MSRP

• Charging location and attributes
 • AFDC
 • Entry date, GPS coordinates, connector count/types, price, network affiliation, amenities

• Charging location utilization
 • Status by station at 30-min intervals; 2015, 2016 (all US) and Nov 2021 - present (CA only)
 • 1.6 million check-ins and reviews from a crowd-sourced website/app from 2011 - present
Roadmap of talk

1. Data & Industry background

2. Reduced-form estimates
 a. Spillover test 1: station-level
 b. Spillover test 2: route-level

3. Model
Empirical test for spillovers

- Estimate impact of charging station entry on incumbents at different distances
 - Does entry some distance away bring more business to incumbents?
 - Expect negative impacts at short distances (business stealing)

Estimating equation:

\[y_{jt} = \beta_0 + X_d \beta_d \Delta_{\text{Competitors}} + \gamma_j + \gamma_t + u_{jt}, \]

where \(d \) denotes distance bands from incumbent \(j \).

Caveat: (currently) no instrument for entry (suggestions welcome!)

Key identification assumption: Unobserved demand shocks are local \(\Rightarrow \) no common unobserved demand shocks far away.

One possibility is EV subsidies as a demand shifter

Expect differences depending on whether charging standards are shared. Two cases:

1. Entrants and incumbents share charging standards
2. Entrant on a different charging standard
Empirical test for spillovers

- Estimate impact of charging station entry on incumbents at different distances
 - Does entry some distance away bring more business to incumbents?
 - Expect negative impacts at short distances (business stealing)

- **Estimating equation:**

 \[y_{jt} = \beta_0 + \sum_d \beta_d \Delta \text{Competitors}_{jdt} + \gamma_j + \gamma_t + u_{jt}, \]

 where \(d \) denotes distance bands from incumbent \(j \).

- Caveat: (currently) no instrument for entry (suggestions welcome!)
 - Key identification assumption: Unobserved demand shocks are local \(\Rightarrow \) no common unobserved demand shocks far away.
 - One possibility is EV subsidies as a demand shifter
Empirical test for spillovers

- Estimate impact of charging station entry on incumbents at different distances
 - Does entry some distance away bring more business to incumbents?
 - Expect negative impacts at short distances (business stealing)

- **Estimating equation:**

\[
y_{jt} = \beta_0 + \sum_d \beta_d \Delta \text{Competitors}_{jdt} + \gamma_j + \gamma_t + u_{jt},
\]

where \(d\) denotes distance bands from incumbent \(j\).

- Caveat: (currently) no instrument for entry (suggestions welcome!)
 - Key identification assumption: Unobserved demand shocks are local \(\Rightarrow\) no common unobserved demand shocks far away.
 - One possibility is EV subsidies as a demand shifter

- Expect differences depending on whether charging standards are shared. Two cases:
 1. Entrants and incumbents share charging standards
 2. Entrant on a different charging standard
At what distances should we expect effects?

- Car range is upper bound on spacing of charging trips.
- Significant share of cars charging at these stations have range of 75-150 miles.
- For now: focus on distances of 75-150 miles vs. shorter distances.
- Work in progress: explore impact of changes in range of EV fleet over time.
Impact of entrants on incumbents with shared standard

- Preliminary estimate (please do not cite): Adding a station 75-150 miles away increases incumbent utilization during peak hours by .49 percentage points (or 3.1%).
Impact of entrants on incumbents with shared standard

- Preliminary estimate (please do not cite): Adding a station 75-150 miles away increases incumbent utilization during peak hours by .49 percentage points (or 3.1%).

- No evidence of business stealing for short distances (but noisy estimates)
Impact of entrants on incumbents with different standard

- Entry is not associated with significant (positive or negative) changes in utilization for incumbents with different standards.

- Exception: positive increases in demand 0-1 miles away. Interpretation: common demand shock.
Route-level analysis

- So far: effect of entry at different distances from the incumbent, relatively coarse
- Road network allows for more structured tests
- Study impact of entry on incumbents along the same route
 - Compare impacts of entrants that ‘complete’ routes vs. earlier entrants that do not
 - Expect larger effects on previously disconnected routes
 - Plan to use state EV subsidies as a demand shifter for charging demand (not implemented in today’s results)
Illustration of entry on a specific route

(a) Lawrence, KS to Chicago, IL, 2019
Illustration of entry on a specific route

(a) Lawrence, KS to Chicago, IL, 2019
(b) 2021

Figure: EV routing in the Midwest; Source: abetterrouteplanner.com
User-specific data suggest spillovers from the entrant

Comments about the entrant:

- “It works! Now I can get from Des Moines to Kansas City w/o major range anxiety or having to do mental math while driving.”
- “Very happy to see this charging void getting filled for non-Teslas!”
- “About 8 degrees outside. Arrived with 40% SOC. Working well. Without this Bethany station I wouldn’t make it from Des Moines to KC!”
Data construction steps with example of San Jose to Santa Barbara, CA

• Set of origins and destinations: FHWA Adjusted Urban Areas (493)
• Intersect charging stations with routes between each origin-destination pair
• Calculate distance between adjacent charging stations; a route is connected for a certain range if maximum distance is less than that range

The new station that “electrifies” this route at the 50-mile range for the SAE J1772 Combo standard is in Los Alamos (Electrify America, entered May 2022).
Route-level analysis

- **Estimating equation:**

 \[y_{rt} = \beta_0 + \beta_c \text{Connected}_{rt} + \gamma_r + \gamma_t + u_{rt}, \]

 where \(r \) denotes a route, and \(y_{rt} \) is average utilization of incumbents on route \(r \).

- \(\beta_c \) interpretation: impact of a route becoming connected at a certain range on incumbent utilization rates

- Identification assumption: unobserved (common) demand shocks are uncorrelated with whether a new entrant connects a route

⇒ Preliminary estimate, please do not cite: An entrant that “electrifies” a route at 50-mile intervals increases utilization of incumbent stations by .63 percentage points (or 25.9%) on average (in California, 2021 - present).
Route-level analysis

- **Estimating equation:**

\[y_{rt} = \beta_0 + \beta_c\text{Connected}_{rt} + \gamma_r + \gamma_t + u_{rt}, \]

where \(r \) denotes a route, and \(y_{rt} \) is average utilization of incumbents on route \(r \).

- \(\beta_c \) interpretation: impact of a route becoming connected at a certain range on incumbent utilization rates

- Identification assumption: unobserved (common) demand shocks are uncorrelated with whether a new entrant connects a route

⇒ Preliminary estimate, please do not cite: An entrant that “electrifies” a route at 50-mile intervals increases utilization of incumbent stations by .63 percentage points (or 25.9%) on average (in California, 2021 - present).

- **Next question:** Do charging networks help coordinate charging locations entry?
How do charging networks compare in entry patterns?

• For each charging standard, route, and time period, compute location share by network (e.g. ChargePoint, Electrify America)

• Each route, at the time of becoming connected, has a dominant network and a set of newly arriving stations that contribute to it becoming connected.

• On a small sample of routes, YTD 2022, for the Combo standard
 • 69% of entrants are on the dominant network (EVConnect, Electrify America) when the network becomes connected, compared to
 • 62% of all entrants being on the dominant network (ChargePoint)

• Working on formulating this empirical test to something between 0 and 1 so that we have a sense of magnitude or what to make of this (e.g. how close to vertically integrated or centrally planned is this network)
Roadmap of talk

1. Industry background & Data

2. Reduced-form estimates
 a. Spillover test 1: station-level
 b. Spillover test 2: route-level

3. Model sketch
Model sketch

- **Goal:** Compare welfare of the ‘every-50-mile’ policy to a uniform charging station subsidy

- **Ingredients:**
 1. How drivers demand charging services given the charging network
 2. Which charging stations would be induced to enter with different subsidy eligibility rules
 3. Charging networks set entry and network fees to maximize profits
Model ingredient 1: Consumers

- Live in a market and have mobility needs

- Given charging network and their vehicle from prior choice, where to recharge when away from home.

- Disutility from time and monetary cost of charging
 - Cost of time or location distortion for charging compared to “natural” dwell time/location
 - “Opportunistic charging” (at work, shopping, waiting at a kid’s weekend activity) vs. twiddling thumb at a highway rest stop

- Identification:
 - Price elasticity: Energy cost shifters from utility rates and structures
 - Elasticity w.r.t. location and inconvenience: Prior charging station subsidies, Alternative Fuel Corridor designation program
People look for charging near where they already go

Figure: Visits to Gas Stations by People Who Live in KC, MO, Aug 2020; SafeGraph
Free stations have higher utilization than paid stations.

(a) Network X (Nationwide), Sep 2015
(b) Network X (CA Only), Nov 2021 - Feb 2022

Figure: Average Over Station-Day Observations
Model ingredient 2: Site hosts

- Endowed with a location and on-site amenity/business

- Set of possible charging station site hosts:
 - Any hotel, retail establishment, parking garage, municipal parking lot
 - Subsidy policy changes which sites are eligible

- Each period, given the charging network
 - If never entered, pay entry cost to enter
 - If previously entered, pay network fee/maintenance cost to remain active
 - If active, choose prices

- Multiple equilibria, depending on expectations (Katz and Shapiro (1985))
 - Use crowd-sourced check-in data to ‘cut up’ the network into independent charging markets
 - Identification from government coordination activity (Alternative Fuel Corridor designation program) and prior charging station subsidies
Model ingredient 3: Charging networks

- Intermediate between drivers and charging station site hosts.
 - Drivers pay membership fees (to the network) and marginal usage fees (split between site host and network).
 - Charging station site hosts pay a per-period network fee.

- Choose how much to subsidize either side of the market

- In counterfactual:
 - Hold fixed the organizational form of the network (e.g. vertical integration with sites)
 - Subsidy eligibility changes the entry profitability of different sites
Summary and next steps

- U.S. charging station subsidy policy can be rationalized by positive entry spillovers across charging locations.

- **Next steps:**
 - Specify and estimate a structural model of the charging industry
 - Evaluate impact of a targeted every-50-mile subsidy policy compared to a uniform subsidy
THANK YOU!
Census tracts at 10th and 90th percentile by population count

(a) 10th percentile

(b) 90th percentile
Census tracts at 10th and 90th percentile by population count

(a) 10th percentile

(b) 90th percentile